Mold Testing and Bacteria Testing

Trusted Laboratories

Trusted Laboratories

Phone: (905)290-9101
Toll Free: 1-866-813-0648

Worried About Mold?

Click ** Get Your Free Assessment Now!**

  • Home
  • About Us
  • Services
    • Mold Testing
    • Bacteria Testing
    • Legionella Testing
    • Cannabis Testing
    • Antimicrobial effectiveness testing
    • Biological Indicators and Sterilization Process
    • Contract Microbiological Research
    • Environmental Monitoring & Bioburden Testing
    • Material Fungus Resistance Testing
    • Materials Standard Testing
    • Cannabis Licence
  • Accreditation
  • Mold Test Kits
  • View Courses
  • Freebies
    • Live Presentations
    • FREE Mold Inspection Quiz
    • FREE Mold Spore Identification Quiz
  • Resources
    • Chain of Custody Form
    • Ask a Question
    • How to Take Samples
    • Results Interpretation
    • Mold and Bacteria Pictures
    • Jobs
  • Contact us
You are here: Home / Mold / The Phases of Fungal Growth in Indoor Environment

The Phases of Fungal Growth in Indoor Environment

Dr Jackson Kung'u

Fungal growth in both modern and historic buildings is attributed to environmental conditions such as water, humidity, temperature and lack of ventilation. Often, people will ask the laboratory if it is possible to tell how old the mold is and/or whether the mold was actively growing and what the source of the mold was. The simple answer to these questions is that currently it is not possible to say how old the mold is or the source of the mold. Although the lab may speculate that the mold was actively growing if mycelia/hyphae appear young, strictly speaking, it is difficult to tell whether the mold was actively growing by observing it under the microscope. In this article we shall discuss in details the phases of fungal growth and succession so that the reader can understand why it may be difficult to give definite answers to these questions.

Fungal growth succession

fungal growth on wood
Penicillium mold on ceiling

Before we discuss fungal growth phases let’s see how different groups of fungi interact in nature. Viable fungal spores are ubiquitous in indoor environments and are well adapted to inhabit this ecological niche if just sufficient water is available. Based on the water activity (or equilibrium relative humidity) requirements, fungi can be divided into 3 broad groups:

Primary colonizers
Primary colonizers (also referred to as xerophiles) are capable of growth in relatively dry conditions at water activities (aw) of between 0.6-0.8. These kind of conditions can be achieved through slow leaking pipes, condensation or other sources of moisture. At this low water activity viable propagules (spores and mycelial fragments) of species of Wallemia, Penicillium, Aspergillus and Eurotium would germinate and form growth (see the photo to the right).

Secondary colonizers
As the water activity of the building material increases to between 0.8 and 0.9, the secondary colonizers would proliferate. Secondary colonizers include species of Cladosporium, Phoma, Ulocladium, Alternaria and also some species of Aspergillus such as A. flavus and A. versicolor. If nutrients are still available on the substrate and the water activity remains unchanged the secondary colonizers would gradually become the dominant fungi.

Tertiary colonizers
At water activity of 0.9 and above, the “water-loving” fungi (also called hydrophiles) would dominate as the tertiary colonizers. These levels of water activity are generally only met by incoming water as under flooding conditions and not just high humidity or condensation on indoor surfaces. Immediately after the flooding or serious water leakage, for example, all types of molds would colonize the wet building material but with those that require higher water activity dominating. Presence of tertiary colonizers in a building is an indication of a serious water problem. Tertiary colonizers include molds such as Stachybotrys, Chaetomium, Ulocladium, Trichoderma, Aureobasidium as well as actinomycetes and other bacteria.

This grouping can also be based on nutritional requirements of the fungi. For example, primary colonizers prefer simple sugars while tertiary colonizers prefer complex sugars such as cellulose.

Fungal growth

Fungal growth may be restricted or unrestricted. Unrestricted fungal growth occurs when the substrate contains an excess of all growth factors. During unrestricted growth, the total hyphal length and the number of tips of a mycelium increases indefinitely. In nature unrestricted growth may only be possible within a short time due to unfavourable growth conditions. Restricted growth occurs when not all nutrients are present in excess or when conditions such as nutrient concentration, pH or mycelial morphology are changed sufficiently to affect the maximum growth rate. Growth of a fungus on a solid substrate for example a drywall, eventually results in conditions such as nutrient depletion, change in pH at the centre of the colony which are less favourable for growth than was initially the case. If there is no competition with other micro-organisms, growth of the hyphae on the peripheral ring occurs at approximately maximum growth rate but growth proceeds at below maximum growth rate elsewhere in the colony, often falling to zero or near zero at the colony centre, i.e., some parts of the fungus would be actively growing while others would not be growing at all or would be dead.

Fungal growth phases

From the time a spore or a hyphal fragment germinates to form a colony to the time the fungus dies, there are a number of growth phases. Although these phases have been determined under laboratory conditions, it is possible that the same occur in nature. In nature the duration of each phase would be determined by the environmental conditions including other competing micro-organisms.

  • Lag phase
    Once the growth conditions become favourable for the fungal propagules (i.e., viable spores or mycelial fragments) to germinate, new transport systems must be induced before growth commences. Thus growth starts slowly and accelerates gradually. This phase is referred to as the lag phase.
  • Exponential or log phase
    Exponential growth occurs only for a brief period as hyphae branches are initiated, and then the new hypha extends at a linear rate into un-colonized regions of substrate. The biomass of the growing fungus doubles per unit time. As long as the nutrients are in excess growth remains constant during the exponential phase.
  • Stationary phase
    As soon as the nutrients are depleted or toxic metabolites are produced growth slows down or is completely stopped. The biomass increases gradually or remains constant. During the stationary phase, hyphal growth stops and, in some molds, cell differentiation occurs, resulting in spore formation. During this process nutrients are transferred from the vegetative mycelium to the developing spores. The spores are dispersed by air movement to other areas of the building where they can start new mold growth once the conditions for growth are favourable.
  • The death phase
    During the death phase, the mycelium eventually dies off. The death phase is usually accompanied by breakdown of the mycelia through self-digestion. Some fungi form spores by fragmentation of the hyphae.

As noted earlier different sections of the same fungus are at different phases of growth.

Want to know more about mold and bacteria? For free information, email your questions to our Help Desk. Your questions will be answered within 48-72 hours. Complete confidentiality is guaranteed.

For immediate assistance call 905-290-9101.

author avatar
Dr Jackson Kung'u
Dr. Jackson Kung’u is a Microbiologist who has specialized in the field of mycology (the study of moulds and yeasts). He is a member of the Mycological Society of America. He graduated from the University of Kent at Canterbury, UK, with a Masters degree in Fungal Technology and a PhD in Microbiology. He has published several research papers in international scientific journals. Jackson has analyzed thousands of mould samples from across Canada. He also regularly teaches a course on how to recognize mould, perform effective sampling and interpret laboratory results. Jackson provides how-to advice on mould and bacteria issues. Get more information about indoor mould and bacteria at www.drjacksonkungu.com.
See Full Bio
social network icon social network icon

No related posts.

Filed Under: Mold Tagged With: primary colonizers, secondary colonizers, tertiary colonizers, water activity

How Much Do You Know About Mold?

Take a 3 minutes Quiz and find out how much you know about mold. To start the Quiz please Click START QUIZ below.

General Knowledge Mold Quiz

General knowledge mold quiz- Try it, it's fun!
Complete the form below to see results
Share your result via
Facebook X Pinterest LinkedIn Email

By the way, we have online mold courses at https://www.mytrainingcourses.ca

« Skin bacteria could be used to identify you
What Do Your Mold Lab Test Results Mean? »

Online Training

Mold Inspection and Lab results
Interpretation Course. Only $279.50

Mold Testing Kits

Professional air quality testing
kit. Only $116 to test air quality!

Bacteria Testing

Microbiology Testing lab providing Testing of E. coli, Total Coliforms & Fecal!

Legionella Testing

Legionella Testing by CALA-accredited laboratory. Call Today!

Laboratory Mold Testing

‪Accredited Microbiology testing lab providing mold testing services!

Mold Inspection Services

The Mold Testing Company To Call
For Indoor Air Quality Inspection!

Recent Posts

Is E. coli Airborne? Separating Facts from Myths in Bacterial Sampling

In the world of indoor environmental quality, bacterial contamination often raises questions, especially when dealing with sewage damage. A recent … [Read More...]

 - Mold Testing and Bacteria Testing

Is “Black Mold” Equivalent to “Toxic Mold”?

Is "Black Mold" Equivalent to "Toxic Mold"? No, black mold is not equivalent to toxic mold. "Black Mold" is a term that is often used incorrectly to … [Read More...]

 - Mold Testing and Bacteria Testing

Exploring Non-Tuberculous Mycobacteria (NTM): Understanding Characteristics and Implications

What Are Non-tuberculous Mycobacteria (NTM)? Non-tuberculous Mycobacteria are mycobacteria other than Mycobacterium tuberculosis and M. leprae, and … [Read More...]

Learn With Us…

Courses

  • Mold Inspection, Identification and Control
  • Fungal Spore Identification
  • Mold Inspection Business Course
  • How to take Mold Samples Course
  • Coliform Testing
  • WHMIS
  • INTERESTING KNOWLEDGE QUIZES

Get In Touch

By phone or by email
905-290-9101
Email

Our Location
1020 Brevik Place, Unit 1A • Mississauga, ON L4W 4N7
(Phone: 905-290-9101 • toll-free: 1-866-813-0648 • fax: 905-290-0499.)

  • Email
  • Facebook
  • LinkedIn
  • Twitter
  • YouTube

Search this Site

Recent Posts

  • Is E. coli Airborne? Separating Facts from Myths in Bacterial Sampling
  • Is “Black Mold” Equivalent to “Toxic Mold”?
  • Exploring Non-Tuberculous Mycobacteria (NTM): Understanding Characteristics and Implications

Useful Links

  • Chain of Custody Download
  • Contact us
  • Privacy policy

Copyright © 2025 · Mold & Bacteria Consulting Laboratories. Log in